Medium Voltage Cable Accessories

A Theoretical & Practical Appraisal

Dr. Derek Golubra
CEng. MIET

Nexans

Thorne & Derrick
+44 (0) 191 410 4292
www.powerandcables.com
Medium Voltage Cable Accessories
A Theoretical & Practical Appraisal

Dr. Derek Goulsbra
CEng. MIET
This book is a follow up to an earlier edition entitled “Some thoughts on MV cable accessories”. Greater emphasis is placed on modes of failure and ways to overcome potential problems encountered in the field. It is the aim of the book to provide as much information as possible to engineers and jointers who are responsible for specifying and installing these products. It is hoped that by following the information presented, the reliability of accessories will be improved thus saving considerably on the cost of failures due to loss of supply, labour and equipment replacement.

Cable accessories account for the least capital expenditure in the distribution network when compared with switchgear, transformers and cables, but can prove to be the weakest part of it because they have to be assembled on site. This book will describe in detail the workings of accessories and show why common faults can occur and the steps to be taken to prevent problems.

Some of the mathematics and associated assumptions relating to voltage distribution in this work are simplified and two-dimensional. In reality we are looking at complex three-dimensional models, but it is felt that it is unnecessary to proceed down this path in order to explain in broad terms how certain phenomena occur. The author makes no apology for this, but begs the reader understands the purpose of the work.

Nexans Power Accessories (UK) Ltd
I am indebted to the help and encouragement given by Gary Halton, Mick Dawn, Emma Hutton and Jon Rhodes of Nexans Power Accessories (UK) Ltd. The following companies have been most helpful in providing information and illustrations and their cooperation is much appreciated.

- CMP Products – www.cmp-products.co.uk
- Ellis Patents Ltd – www.ellispatents.co.uk
- W T Henley Limited – www.wt-henley.com
- Nexans Power Accessories (UK) Ltd – www.nexans.co.uk
Contents

Chapter 1 An introduction 1

Chapter 2 Electrical breakdown of air and solid dielectrics 3

 2.1. Electrical breakdown of air
 2.2. Electrical breakdown of solid insulating materials
 2.3. Effect of air/solid combinations on voltage distribution
 2.3.1. Voltage distribution between infinite parallel plates
 2.3.2. Voltage distribution between concentric cylinders
 2.3.3. Voltage distribution between concentric cylinders with two dielectrics
 2.3.4. Maximum electric stress in a cylindrical dielectric

Chapter 3 Some practical examples of mixed dielectrics in accessories 19

 3.1. Cable breakout area of paper belted cable
 3.2. Adjacent unscreened cores
 3.3. The end of an earth screen on polymeric cable
 3.4. Area surrounding a connector in a joint
Chapter 4 Some notes on cable preparation 23
4.1. Tools for removing outer sheath and insulation
4.2. Removing a bonded screen
4.3. Removing easy peel screen
4.3.1. Method 1 – using basic tools
4.3.2. Method 2 – using sophisticated tooling
4.4. Graphite coated conductive tape wrapped cores

Chapter 5 Treating the screen cut on polymeric cables 31
5.1. The problem area
5.2. Some techniques for eliminating potential voids
5.2.1. Conductive paint
5.2.2. Void filling stress relieving tape
5.2.3. Pliable stress control
5.3. Pros and Cons

Chapter 6 Stress control on paper belted cables 35
6.1. Initial preparation of paper belted cable
6.2. Cable breakout area of unscreened paper cable
6.3. Screening the cable cores

Chapter 7 Stress control in polymeric cable accessories 41
7.1. Stresses within a cable
7.2. Stress control at screen cut
7.2.1. Swamping
7.2.2. Geometric stress control
7.2.3. Electrical stress control
7.3. Stress control in joints
7.3.1. Stress relieving tape around the connector
7.3.2. The Faraday Cage

Chapter 8 Terminations 1 – A practical appraisal 49
8.1. The function of a termination
8.2. Management of air
8.2.1. Paper belted terminations
8.2.2. Screened cable terminations
8.2.3. Screened cable terminations – some examples
8.3. Connection to equipment bushings
8.3.1. Heat shrink mouldings
8.3.2. Push on mouldings
8.4. Issues with bushing connection insulating systems
8.5. Outdoor terminations

Chapter 9 Terminations 2 – Separable connectors 63
9.1. Introduction
9.2. A screened separable connector
9.3. Bushings
9.4. Cable reducers
9.5. Connecting to a bushing
9.6. Connecting more than one cable per phase

Chapter 10 Terminations 3 – Earthing 71
10.1. Introduction
10.2. Outdoor terminations
10.2.1. Single core cable with copper wires or copper tape screen
10.2.2. Single core polymeric cable with aluminium armour
10.2.3. Three core polymeric cable with steel wire armour
10.2.4. Three core paper cable with corrugated aluminium sheath
10.2.5. Paper cable with lead sheath and steel wire armours
10.2.6. Three core paper cable with steel tape armour
10.3. Indoor terminations
10.3.1. Single core unarmoured polymeric cable
10.3.2. Single core cable with tape screen and armours
10.3.3. Three core paper cable with corrugated aluminium sheath
10.3.4. Three core cable with steel wire armours
10.4. Compression glands
10.4.1. Ingress protection – IP ratings
10.4.2. Gland seals
10.4.3. Cable support
10.4.4. Cable earthing

Chapter 11 Terminations 4 – The effect of moisture 87

11.1. Introduction
11.2. Formation of a conductive layer on terminations
11.2.1. Clean moisture
11.2.2. Industrially polluted moisture
11.2.3. Coastal moisture
11.2.4. Condensation
11.3. Effect of a conductive layer
11.4. The possible effects of discharges on polluted terminations
11.4.1. Surface degradation of the outer material of a termination
11.4.1.1. Surface tracking
11.4.1.2. Anaerobic tracking
11.4.1.3. Surface erosion
11.4.1.4. Surface flashover
11.5. Sealing of terminations
11.6. Reducing the effects of surface discharge

Chapter 12 Joints – An overview 95

12.1. Introduction
12.2. Connecting the conductors
12.2.1. Crimped connectors
12.2.2. Mechanical connectors
12.3. The elimination of air from critical areas
12.3.1. Stress relieving tape
12.3.2. Faraday Cage
12.4. Stress control
12.4.1. Geometric type – a) push on
12.4.2. Geometric type – b) cold shrink
12.4.3. High permittivity
12.5. Thickness of insulation
12.6. Sealing the joint
12.6.1. The one piece joint
12.6.2. The multi layered joint
12.7. Earthing
12.7.1. Single core
12.7.2. Three core joint earth
12.8. Mechanical strength
12.9. Hybrid joints
12.9.1. Moulded Faraday Cage over connector
12.9.2. Shrink tubes and resin combination

Chapter 13 Earthing of single core cables
13.1. Induced voltages and currents in single core cables
13.1.1. Induced voltage
13.1.2. Induced current
13.2. Some practical situations
13.2.1. Short cable length
13.2.2. Medium cable length
13.2.3. Long cable runs
13.3. Fault caused by circulating current
13.4. Conclusions

Chapter 14 Type testing of accessories
14.1. Introduction
14.2. Some qualification tests for accessories
14.2.1. DC withstand
14.2.2. AC dry withstand
14.2.3. AC wet withstand – outdoor terminations only
14.2.4. Partial discharge
14.2.5. Impact test – joints only
14.2.6. Thermal cycling
14.2.7. Impulse voltage withstand
14.2.8. Humidity – indoor terminations only
14.2.9. Salt fog test – outdoor terminations only
14.2.10. Immersion test – outdoor terminations only
14.2.11. Thermal short circuit
14.2.12. Dynamic short circuit
14.2.13. Inspection
14.3. Test voltage levels
14.4. Testing terminations to HD 629/BS 7888
14.5. Testing joints to HD 629/BS 7888
14.6. Testing screened separable connectors
14.7. Limitations of type testing

Chapter 15 Surge arresters 129

15.1. Introduction
15.2. Metal Oxide Arrester
15.3. Typical surge arresters and connections

Chapter 16 Testing of cable and equipment 133

Chapter 17 Cable supports 141

17.1. Introduction
17.2. Cleats
17.2.1. Requirements
17.2.2. Cleat spacing
17.2.3. Cleat specifications
17.2.4. Trefoil cables with low short circuit levels
17.2.5. Trefoil cables with moderate short circuit levels
17.2.6. Trefoil cables with high short circuit levels
17.2.7. Triplex cables
17.3. Short circuit test with correctly installed cleats
<table>
<thead>
<tr>
<th>Chapter 18</th>
<th>Recent developments</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1.</td>
<td>Terminations</td>
<td></td>
</tr>
<tr>
<td>18.1.1.</td>
<td>Push on</td>
<td></td>
</tr>
<tr>
<td>18.1.2.</td>
<td>Cold shrink</td>
<td></td>
</tr>
<tr>
<td>18.2</td>
<td>Joints</td>
<td></td>
</tr>
<tr>
<td>18.3.</td>
<td>Separable connectors</td>
<td></td>
</tr>
<tr>
<td>18.3.1.</td>
<td>Larger rated systems</td>
<td></td>
</tr>
<tr>
<td>18.3.2.</td>
<td>Reduced size of products</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 19</th>
<th>A review</th>
<th>155</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>19.2.</td>
<td>Dos and don’ts</td>
<td></td>
</tr>
<tr>
<td>19.3.</td>
<td>The future</td>
<td></td>
</tr>
</tbody>
</table>
This book is a detailed look at medium voltage cable accessories which will be of value to jointers and engineers alike. In order to understand the workings and failure modes of the accessories, a section on electrical breakdown of air and solids and a combination of the two is presented.

This is followed by a practical consideration of cable preparation using present day techniques and tools prior to installing the accessory.

Terminations, separable connectors, joints and associated components are examined in detail with explanations of the various technologies employed.

Finally, examples of failures are presented with explanations of how these could have been avoided.